US006948034B2

a2 United States Patent
Aoki

(10) Patent No.:
5) Date of Patent:

US 6,948,034 B2
Sep. 20, 2005

(54) METHOD FOR USE OF STACK

(75) Inventor: Yayoi Aoki, Tokyo (JP)

(73) Assignee: NEC Corporation, Tokyo (JP)

(*) Notice:  Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 209 days.
(21) Appl. No.: 10/300,788
(22) Filed: Nov. 21, 2002
(65) Prior Publication Data
US 2003/0105927 Al Jun. 5, 2003

(30) Foreign Application Priority Data
Nov. 30, 2001 (JP) ccocoiviiiiiiiiiiiiiiiiiice 2001-366399
(51) Int. CL7 o GO6F 12/00
(52) US.CL ..o 711/132; 711/129; 718/100
(58) Field of Search ...........c.cccocooveeiiene. 711/129, 132;
718/100
(56) References Cited
U.S. PATENT DOCUMENTS
5,727,178 A * 3/1998 Pletcher et al. ............. 711/202
6,332,215 B1 * 12/2001 Patel et al. ................ 717/141
2001/0037425 Al  11/2001 Yanagi
2002/0019976 Al * 2/2002 Patel et al. ................. 717/137

FOREIGN PATENT DOCUMENTS
JpP 1-251248 10/1989
JpP 02-178847 7/1990
JpP 4-219842 8/1992
JpP 7-056755 3/1995

Whether or not thread

WO WO 00/038060 A2 6/2000
WO WO 01/084304 A2 11/2001

OTHER PUBLICATIONS

The English translation of the Applicant’s Admitted Prior
Art: A Study of JAVA Virtual Machine Multithread Aca-
demic Journal of Yunan University (Natural Science Sec-
tion) 1997; pp. 531-538.*

A Study of JAVA Virtual Machine Multithread Academic
Journal of Yunan University (Natural Science Section) 1997,
pp- 531-538.

Shinji Nakagawa et al., “Development of a Realtime Java
TM Bytecode”, Omron Technics, vol. 40, No. 1, pp. 38—43,
Mar. 20, 2000.

Takashi Aoki, “A Java Virtual Machine on a Real Hardware
Stack Machine”, The Institute of Electronic, Information
and Communication Engineers, vol. 100, No. 655, pp.
39-46, Feb. 27, 2001.

* cited by examiner

Primary Examiner—Matthew D. Anderson
Assistant Examiner—Hetul Patel
(74) Attorney, Agent, or Firm—Foley & Lardner LLP

(7) ABSTRACT

The present invention has an objective of minimizing dete-
rioration of the processing speed of a Java accelerator device
even when stack overflow occurs in a stack memory unit.

A first thread presently allocated to a first stack area of a
stack memory unit 113 to which a fourth thread belongs is
saved in a virtual stack area of a main storage medium 103.
Thereafter, the data of the fourth thread as stack data to be
switched is copied to the first stack area of the stack memory
unit 113 by the controller unit 112 (accelerator device 101).

6 Claims, 3 Drawing Sheets

to be switched is
o slag)k area

Is other thread
altocated to stack area
to be ex‘t’:hangsd

Is virtual stack frame for
thread to be saved reserved
in virtual ‘s’lack area

Is size of virtual stack
frame larger than size

of sav%d data

Reserve virtual stack frame in virtual
stack area 5405

| Save stack data in virtual stack area_|-—~S406

Restore stack data to be switched from

virtual stack area to stack area of stack S407
memory unit

Te




U.S. Patent

Sep. 20, 2005

Sheet 1 of 3

FIG.1 ~ 101
Accelerator device
111/1,/{ Temporary memory uniilr
112—4]  Controller unit FH—— cpu ] 103
I ]
Stack memory unit Main storage medium
| Stack area
1131 bom o e
Stack area Virtual stack area
__________________ {
Stack area
FIG.2
Determine stack area
with the least number 5201
of thread belonging
S202
Is ather thread NO
allocated to selected
stack area?
5204
5203 Vel
Allocate generated thread
Generate virtual stack to selected stack area as
frame in virtual stack area stack frame
T
End
FIG.3
~ 113
Stack memory unit Allocated thread
First stack area First thread e Fourth thread
Second stack area Second thread Fifth thread
Third stack area B _ﬂ_F Third thread

US 6,948,034 B2




U.S. Patent Sep. 20, 2005 Sheet 2 of 3 US 6,948,034 B2

FIG.4

S401

Whether or not thread

to be switched is allocated

to stack area
2

YES

5402

Is other thread

allocated to stack area

to be exchanged
?

5403

Is virtual stack frame for
thread to be saved reserved

in virtual stack area
?

YES

5404

Is size of virtual stack

frame larger than size

of saved data
?

NO

Reserve virtual stack frame in virtual
stack area

—5405

f Save stack data in virtual stack area l~/~s406

Restore stack data to be switched from
virtual stack area to stack area of stack —S407
memory unit

End



U.S. Patent Sep. 20, 2005 Sheet 3 of 3 US 6,948,034 B2

FIG.5(a)

Stack memory unit Virtual stack area

First stack area ;
= First thread Fourth thread

Second stack area )
= Second thread Fifth thread

Third stack area
= Fourth thread

FIG.5(b)

First stack area
= First thread effective

data area ) Fourth thread

LR \

Second stack area NN
= Second thread N Fifth thread

Third stack area : .
= Fourth thread \ First thread

FIG.5(c)

First stack area

NEW = Fourth thread (;::' Fourth thread

SP [ rjiation |

Second stack area )
= Second thread Fifth thread

Third stack area .
= Fourth thread First thread




US 6,948,034 B2

1
METHOD FOR USE OF STACK

FIELD OF THE INVENTION

The present invention relates to a method for use of a
stack in a Java accelerator device. Here, “Java” is a trade-
mark.

BACKGROUND OF THE INVENTION

Java is an object-oriented programming language devel-
oped based on C++ by Sun Microsystems (USA), which is
characteristic in that it allows a created program to be
executed without depending on specific operating systems
(0S) or specific types of personal computers (PC). Although
a source code of a program does not depend on specific OSs
or specific types of PCs, it requires an interpreter called Java
Virtual Machine (VM).

VM is a software provided with a function for executing
an intermediate code called a byte code. VM is characteristic
in that byte codes as an instruction set of VM are relatively
compact. A Java chip in which the above-described VM is
implemented with a hardware may be used so that internal
devices such as a portable terminal can be developed which
can execute a program of byte codes with small code sizes.

While Java has been receiving great attention, various
attempts have been made to enhance the processing speed of
Java. For example, use of a Java accelerator device that
executes part of interpreter processing with a hardware is
one technique to enhance the processing speed of Java. Such
Java accelerator device is provided with a stack memory unit
as an internal hardware that allows high-speed access,
thereby enhancing stack access speed.

However, since a memory that allows high-speed access
is expensive, a capacity of the above-described stack
memory unit tends to be small, and thus is likely to result in
stack overflow. Some methods use a predetermined area of
a main storage medium (main memory) used in general VM
as a stack area when such overflow occurs. However, this
renders the use of the accelerator device meaningless.

SUMMARY OF THE INVENTION

Thus, in view of the above-described problem, the present
invention has an objective of minimizing deterioration of the
processing speed of the Java accelerator device even when
stack overflow occurs in the stack memory unit.

A method for use of a stack according to present
invention, the method comprising the steps of: instructing a
Java accelerator device to switch a thread allocated to a stack
memory unit included in the Java accelerator device, from a
first thread to a second thread; and instructing the Java
accelerator device to execute the switched second thread
allocated to the stack memory unit.

According to this method for use of a stack, the second
thread to be executed by the Java accelerator device is
always present in the stack memory unit provided in the Java
accelerator device.

Further, it is preferably the first thread after the switching
is allocated to a predetermined area of a main storage
medium, which is arranged external to the Java accelerator
device. Moreover, the stack memory unit is equally parti-
tioned into a plurality of stack frames to which the threads
are allocated. Furthermore, a thread that cannot be allocated
to the stack frame of the stack memory unit is allocated to
a virtual stack frame formed in the main storage medium,
which corresponds to the stack frame of the stack memory
unit.

10

15

20

25

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing an exemplary con-
figuration of a Java accelerator device to which a method for
use of a stack according to an embodiment of the invention
is applied;

FIG. 2 is a flowchart showing one example of the method
for use of a stack according to the embodiment of the
invention;

FIG. 3 is a diagram illustrating partitioning of a stack;

FIG. 4 is a flowchart showing an example of the method
for use of a stack according to the embodiment of the
invention; and

FIGS. 5a-5c¢ are diagrams illustrating thread switching.

DETAILED DESCRIPTION OF THE
INVENTION

Hereinafter, an embodiment of the present invention will
be described with reference to the drawings.

FIG. 1 is a block diagram showing an exemplary con-
figuration of a Java accelerator device to which a method for
use of a stack according to the present embodiment of the
invention is applied. This type of accelerator device 101 is
used by being connected to a computer provided with a CPU
102 and a main storage medium 103, and is provided with
a temporary memory unit 111, a controller unit 112 and a
stack memory unit 113.

The CPU 102 processes a software or controls the accel-
erator device 101 according to a program stored in the main
storage medium 103. When a Java program is executed, a
virtual stack area is provided in the main storage medium
103. In the accelerator device 101, the controller unit 112
executes interpreter processing as well as stack data copy
processing with a hardware. The temporary memory unit 111
is used for the CPU 102 to control the accelerator device
101. In the stack memory unit 113 including a plurality of
equally partitioned stack areas, data is written in and read
out by the controller unit 112 and the CPU 102.

The controller unit 112 performs various processing
according to instructions from the CPU 102. When the
controller unit 112 receives an instruction “Start” from the
CPU 102 to start processing, it performs, for example, byte
code processing by the interpreter, stack operation in the
stack memory unit 113 or, when a byte code that cannot be
executed by the accelerator device 101 is fetched out, stops
the accelerator device 101 (STOP) and notifies the CPU 102.

When the controller unit 112 receives an instruction
“COPY”, it exchanges data in a stack area of the stack
memory unit 113 with data in a virtual stack area of the main
storage medium 103, according to the address and size given
from the CPU 102 to the temporary memory unit 111. This
data exchanging processing is performed when thread are
switched.

When the controller unit 112 receives an instruction
“GROWUP?”, it saves data in the stack area of the stack
memory unit 113 in the virtual stack area of the main storage
medium 103, according to the address and size given from
the CPU 102 to the temporary memory unit 111. When the
controller unit 112 receives an instruction “CHANGE”, it
exchanges data in the stack area of the stack memory unit
113 and relocates the memory reference values in the stack
areas, according to the two addresses given from the CPU
102 to the temporary memory unit 111.

According to the present embodiment, the accelerator
device configured as described above uses the stack memory
unit 113 as described below to execute Java VM.



US 6,948,034 B2

3

First, when the CPU 102 enters an interpreter loop, it
transmits the instruction “START” to the accelerator device
101, which, in turn, executes interpreter processing.

When the accelerator device 101 undergoing the inter-
preter processing meets a byte code that cannot be executed
with a hardware, it transmits “STOP” notification to the
CPU 102. Upon receiving this notification, the CPU 102
executes the above-described byte code processing and then
transmits the instruction “START” to the accelerator device
101 again. Thus, any unexcitable byte code is processed by
the CPU 102 so that the accelerator device 101 has to
execute only specific byte code processing. Frame pushing
and thread switching are executed by the CPU 102.

The stack memory unit 113 is equally partitioned into a
plurality of areas (a single area is referred to as a “stack
area”). One stack area as a stack frame is allocated one
thread so that a plurality of threads can use the stack memory
unit 113 at the same time.

When the number of the generated threads is equal to or
less than the number of the equally partitioned stack areas of
the stack memory unit 113, the threads can directly be
allocated to the stack areas as the stack frames. When the
number of the generated threads is higher than the number
of the partitioned stack areas, the threads are allocated to
virtual stack frames reserved in the virtual stack areas of the
main storage medium 103.

When the number of generated threads is higher than the
prepared stack areas, stack data in the stack area of the stack
memory 113 and stack data in the virtual stack frame of the
virtual stack area are repeatedly saved and restored upon
every thread switching so that the stack data of the currently
executed thread (called the “current thread”) is always in the
stack memory unit 113. This switching processing is per-
formed with the hardware by transmitting an instruction
“COPY” from the CPU 102 to the accelerator device 101.

When a thread is generated, a stack area to which the
generated thread belongs is determined. These values are
stored for respective threads. When a thread becomes the
current thread, the data is always located in the same area
(stack area) of the stack memory 113.

In order to effectively utilize the stack area, the number of
the surviving threads upon thread deletion and the number of
threads belonging to the stack area to which the deleted
thread belonged are checked. If any unused stack area is
found, threads are transferred starting from those belonging
to a stack area with more number of threads. This stack area
changing processing is performed with a hardware by trans-
mitting the instruction “CHANGE” from the CPU 102 to the
accelerator device 101.

The number of threads belonging to each stack area is
known so that when a new thread is generated, it is allocated
to a stack area with the least number of threads. For
example, when a thread is saved in the virtual stack area for
the first time upon thread switching, a virtual stack frame for
a size of the stack area is reserved. Accordingly, in order to
save stack data, a virtual stack frame fixedly corresponding
to each stack area is allocated each thread that is to be saved
in the virtual stack area of the main storage medium 103.

When a new stack needs to be reserved for a target thread
to be executed (frame push), and when the size of the stack
data used for this thread exceeds the size of the stack area,
exceeding data is saved in the corresponding virtual stack
area as described below. This is called the regrowth of the
stack frame and is executed upon transmission of the
instruction “GROWUP” from the CPU 102 to the accelera-
tor device 101. When the controller unit 112 receives the

10

15

20

30

35

40

45

50

55

60

65

4

instruction “GROWUP?”, it saves, in the virtual stack frame,
the stack data of the thread that has been stored in the stack
memory unit 113 and that has just been used. The remaining
empty stack area is used as a area (regrowth area) for stack
data of the above-described new thread.

Hereinafter, a method for allocating stack frames when
the number of threads exceeds the number of partitioned
areas of the stack memory unit 113 will be described with
reference to FIGS. 2 to 4. First, when the number of the
generated threads does not exceed the number of the parti-
tioned areas of the stack memory unit 113, the generated
threads are directly allocated to the stack areas of the stack
memory unit 113.

On the other hand, when the number of the generated
threads exceeds the number of the partitioned areas of the
stack memory unit 113, first, in Step S201 of the flowchart
shown in FIG. 2, a stack area with the least number of
threads is searched and the searched area is stored in the
generated thread.

Next, a virtual stack frame is generated in the virtual stack
area of the main storage medium 103. The address of the
generated virtual stack frame is stored in the above-
described generated thread. In addition, the number of
threads to be stored in the stack area to which the generated
thread belongs is counted. After determining the stack area
for the generated thread to belong to (Step S201), when the
thread is to be actually stored in the stack area, first, the
corresponding stack area is selected, and then whether or not
other thread is allocated to the selected stack area is checked
(Step S202).

When there is other thread being allocated to the selected
stack area, a virtual stack frame is generated (acquired) in
the virtual stack area of the main storage medium 103 (Step
$203). On the other hand, when there is no thread being
allocated to the selected area (Step S202), the thread is
allocated to the selected stack area as a stack frame (Step
S204). FIG. 3 is a diagram in which the stack memory unit
113 is partitioned into three areas and the number of gen-
erated threads is 5. Of the five generated threads, the first
thread is allocated to the first stack area, the second thread
is allocated to the second area, and the third thread is
allocated to the third area.

The fourth and the fifth threads store the first and second
stack areas as the allocated areas, respectively. However,
since the first and second areas are already allocated other
threads, the fourth and fifth threads are not allocated to the
stack memory unit 113 but to respective virtual stack frames
acquired in the virtual stack area of the main storage medium
103.

Thus, according to the present embodiment, in a state
where a stack area and a stack frame are allocated each
thread, the target thread or the target method to be executed
is located in the stack memory unit 113 upon every thread
switching as described below. Here, a thread is composed of
a plurality of methods. Hereinafter, the stack memory unit
113 is partitioned into three areas and five threads are
generated as shown in FIG. 3.

First, as shown in the flowchart shown in FIG. 4, whether
or not the fourth thread as a thread to be switched is allocated
to the corresponding first stack area is judged (Step S401).
If the thread to be switched is already allocated, there is no
need of switching, thereby terminating the process.
However, in the present case, the first thread is allocated to
the first stack area and the fourth thread to be switched is not
allocated thereto. Thus, the procedure proceeds to the fol-
lowing Step S402.



US 6,948,034 B2

5

Next, whether or not other thread is allocated to the stack
area to be exchanged, i.c., the first area, is judged (Step
S402). As shown in FIG. 5A, since the first stack area is
already allocated the first thread, that is, other thread is
already allocated to the stack area to be exchanged, the
procedure proceeds to Step S403. In Step S403, whether or
not the virtual stack frame for the thread to be saved, i.e., the
first thread, is reserved in the virtual stack area is judged.

As shown in FIG. 5A, no virtual stack frame for the first
thread is present in the virtual stack area, and thus the
procedure proceeds to Step S405 to reserve the virtual stack
frame for the first thread in the virtual stack area. The
address of the acquired virtual stack frame is stored in the
corresponding thread (first thread). If a virtual stack frame
for the thread to be saved is judged to be reserved in Step
S403, the procedure proceeds to Step S404 to judge whether
the size of the reserved virtual stack frame is larger than the
data size of the corresponding thread (size of the saved data).

When the virtual stack frame is reserved and the size
thereof is larger than the size of the saved data, the procedure
proceeds to Step S406 where the first thread presently
allocated to the first stack area to which the fourth thread
belongs is saved in the virtual stack area. The size of the
saved data corresponds to an effective stack data area
beginning from the top of the stack data of the first thread (to
position SP). As a result, the first stack area is defalcated as
shown in FIG. 5B.

Thereafter, the data of the fourth thread as stack data to be
switched is copied to the first stack area of the stack memory
unit 113 by the controller unit 112 (accelerator device 101)
(Step S407). An effective size of the fourth thread is copied
from the virtual stack frame in the virtual stack area of the
main storage medium 103. Furthermore, first stack area
stores that the fourth thread is the currently allocated thread.
The data of the first thread that is no longer the current thread
is not saved until the fifth thread belonging to the same stack
area becomes the current thread.

On the other hand, when there is no other thread being
allocated to the exchanged stack area, i.e., the first stack
area, in Step S402, the procedure proceeds to Step S407 to
copy the data of the fourth thread as stack data to be
switched to the first stack area of the stack memory unit 113.

Accordingly, the target thread to be executed (processed)
is always present in the stack memory unit 113 of the
accelerator device 101, and thus continually allowing access
at high speed.

As described above, according to the present invention,
the target thread to be processed is always present in the
stack memory unit of the Java accelerator device. Therefore,
various advantages such as enhancement of memory access

10

15

20

25

30

40

45

50

6

speed and minimization of deterioration of processing speed
can be achieved.

The invention may be embodied in other specific forms
without departing from the spirit or essential characteristic
thereof. The present embodiments are therefore to be con-
sidered in all respects as illustrative and not restrictive, the
scope of the invention being indicated by the appended
claims rather than by the foregoing description and all
changes which come within the meaning and range of
equivalency of the claims are therefore intended to be
embraced therein.

What is claimed is:
1. A method for use of a stack, the method comprising the
steps of:

instructing a Java accelerator device to switch from a first
thread allocated to a stack memory unit included in the
Java accelerator device to a second thread;

allocating the first thread to a predetermined area of a
main storage medium, which is arranged external to the
Java accelerator device;

determining whether the predetermined area is capable of
completely storing the first thread;

if the predetermined are is determined to be capable of
completely storing the first thread, storing the first
thread in the predetermined area;

if the predetermined area is determined to be not capable
of completely storing the first thread, allocating the first
thread instead to a second area of the main storage
medium and storing the first thread in the second area;
and

instructing the Java accelerator device to allocate the
second thread to the stack memory unit before execut-
ing the second thread.

2. The method for use of a stack according to claim 1,
wherein the stack memory unit is equally partitioned into a
plurality of stack frames to which threads are allocated.

3. The method for use of a stack according to claim 2,
wherein a thread that cannot be allocated to any of the
plurality of stack frames of the stack memory unit is
allocated to a virtual stack frame formed in the main storage
medium.

4. The method for use of a stack according to claim 1,
wherein the main storage medium is a hard disk.

5. The method for use of a stack according to claim 2,
wherein the main storage medium is a hard disk.

6. The method for use of a stack according to claim 3,
wherein the main storage medium is a hard disk.

#* #* #* #* #*



